デジタル庁 デジタル臨時行政調査会様 ご説明資料 トンネル走行型計測技術の開発

国際航業

インフラマネジメント事業部 インフラマネジメント部 平山 貴司

2022/2/22

目次

- 1 はじめに
- 2 計測車両の開発について
- 3 画像解析手法の開発について
- 4 新技術活用検討

1. はじめに トンネル点検の背景

平成24年 笹子トンネル天井板 崩落事故発生

平成26年 道路トンネル定期 点検要領策定(H31改訂)

【課題】

近接目視を5年に1回必ず実施⇒法律化

- ★全国のトンネル約1.1万箇所において、5年に1回点検を実施
- ★工期短縮,コスト縮減,安全性・労働環境改善,精度向上,技術 者の確保

1. はじめに トンネル点検の背景

写真1. 片側規制での作業

写真2. 近接目視点検作業

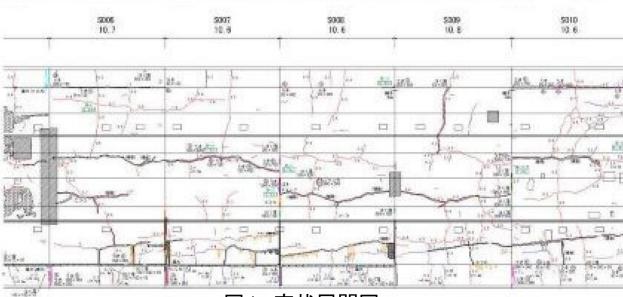
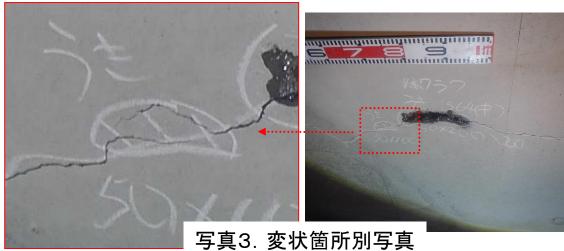



図1. 変状展開図

1. はじめに トンネル点検の背景

点検作業の支援技術として簡易に かつ品質を向上する手法

⇒走行型計測技術の開発(点検ロボット)

最近では

国土交通省道路局では、定期点検への新技術の積極的な活用を図るため、点検に活用可能な技術について、その性能値等をとりまとめた「点検支援技術性能カタログ」を策定している。トンネル画像計測技術は16技術が掲載されている。当社技術 TN010014-V0021 走行型近赤外線撮影によるSfM三次元画像解析システム

1. はじめに 走行型撮影の従来手法

H20年代

- ○煤けたトンネルでの 亀裂抽出困難
- 〇完全なシームレスで はない

1. はじめに 新規開発方針 (H27以降)

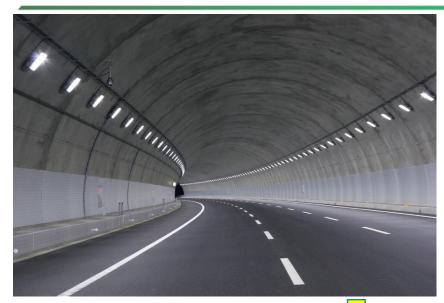


写真1. 新設のトンネルであれば いっぱい

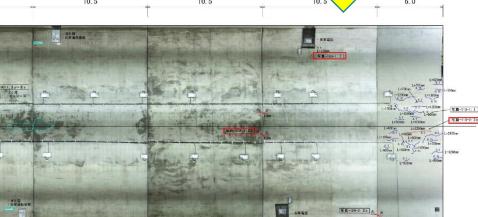
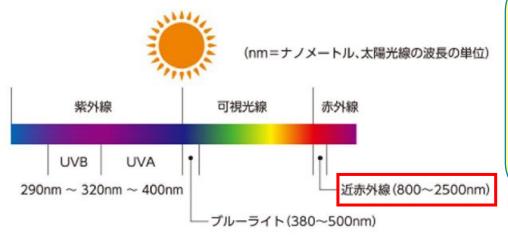


写真2. 変状展開図も鮮明



上記写真のような、暗く、煤けた トンネルでの画像撮影に着目

- →汚れを透過できないか!
- →3次元モデルを自動作成できないか!
- ⇒近赤外線エリアセンサ採用+ SfM解析による3次元モデル

1. はじめに 近赤外線とは

太陽光線の波長の長さ

参考引用図 https://outerskin.jp/ir/kawashima_1.html

リンゴ(瑕疵のある)

写真1. リンゴ

- ・近赤外線は人間がみることの できない光で、可視光より長い 波長。
- ・近赤外線を含む光を被写体に 当てると、被写体の物質の違い により、光の反射や吸収する特 徴の違いが画像として映る。

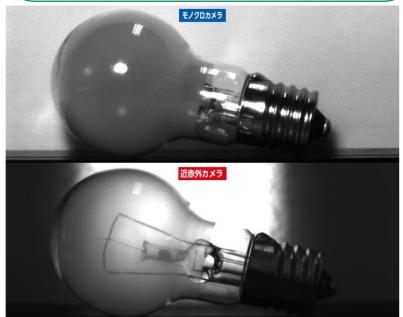


写真2. 電球

参考引用写真 https://www.marubun.co.jp/product/component/a7ijkd000000uyq1.html

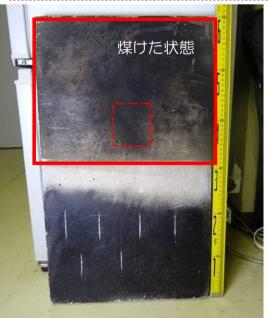
1.はじめに 室内性能検証

煤けたコンクリート試験体での透過性能試験 模擬的に煤けたコンクリート試験体を用意し、 波長の検証を実施した。

LED 照明 850mm 近赤外カメラ

模擬的に煤けたコンクリート試験体を用意し、近赤外カメラと波長帯の異なる照明で撮影し、適した照明

CAMERA: BASLER レンズ: ミュートロン非IR

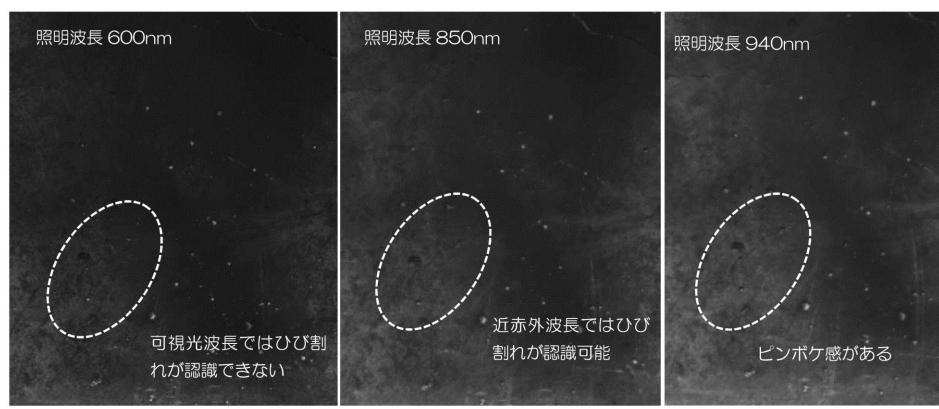

• 照明

メーカ:アイテックシステム4

波長 : ①白色 LED 600 nm 前後

②近赤外 LED 850nm ③近赤外 LED 940nm 照明サイズ: 150×180mm

※ 3種類のフラット照明のデモ機を借用し実施。



試験状況 デジタルカメラではひび割れを確認できない状態

1.はじめに 室内性能検証

結果:波長帯が遠赤外領域に近づくほど透過特性は大きくなるが、カメラの感度特性から 940nm 波長帯となると感度が弱くなりフォーカスが低減する。今回使用したレンズは IR 対応レンズでないことから、今後 IR 対応レンズにて 940nm 照明でのフォーカス改善程度を確認。

2. 計測車両の開発について 実装完成

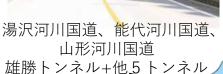
2. 計測車両の開発について 実装完成

上向きカメラ部は、トンネル壁 面までの距離があるため、大 容量のLEDで対応

項目 (近赤外カメラシステム)	試作機の概要					
カメラ	・Basler製NIRカメラ 8台 acA2040-90umNIR - Basler ace 29.3 mm x 29 mm x 29 mm					
カメラ波長	・赤外線領域採用により煤を透過 ・グレースケール					
有効画素数	•2,048 × 2,048dot					
センサ	・CMOSグローバルシャッター 11.3 mm x 11.3 mm					
通信インターフェース	•UAB3.0(5Gbps)					
Fレート	・30fps(最大90fps)距離トリガ採用					
レンズ	・スペース製 JHF16M-5MPSWIR Camera1: 12mm(0.92mm/pixel@2m)、絞り4.0 Camera2-8:16mm(0.69mm/pixel@2m)、絞り2.8					

2. 計測車両の開発について 計測状況

2. 計測車両の開発について 実証トンネル



16トンネルの実績確保

(2021/12現在)

石川富山

岐阜

長野

秋田

山形宮城

福島

岩手

岩手河川国道 二郷山トンネル

磐城国道 新玉野トンネル+他2トンネル

愛媛県

国際航業

大久トンネル

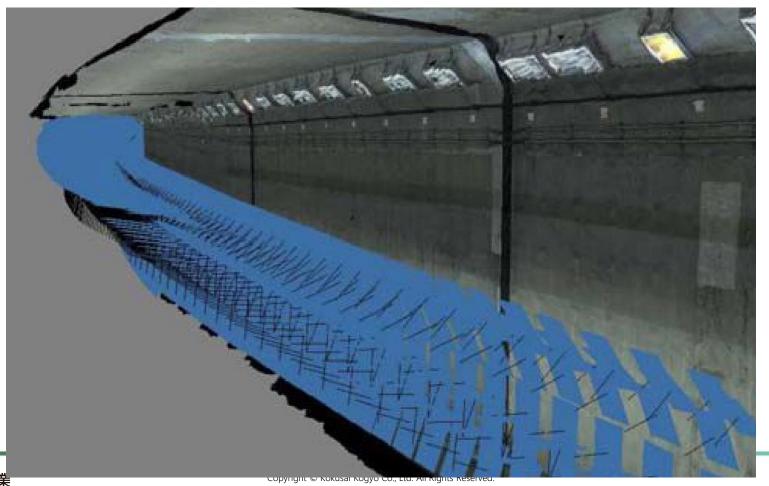
群馬(栃木

埼玉

神奈川 千葉

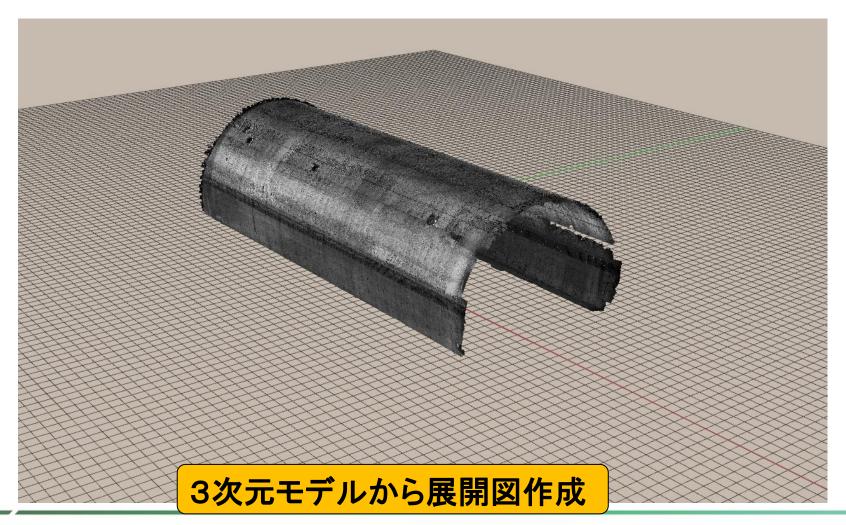
山梨、東京

沼津河川国道 城山トンネル+他2トンネル


高崎河川国道 三国トンネル

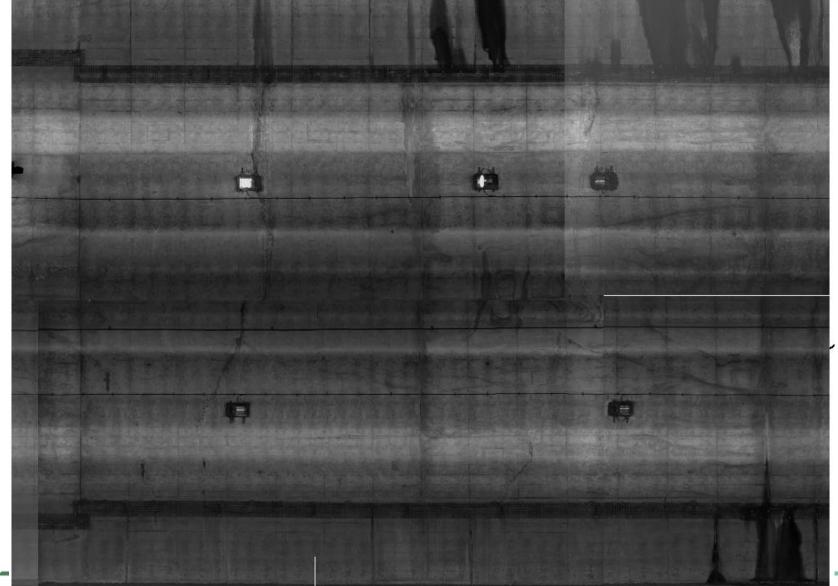
3. 画像解析手法の開発について 3次元モデル作成

※SfM解析とは


- ・異なる位置から撮られた複数枚画像のオーバーラップ部を解析し、3次元モデルを復元
- ・従来の写真測量では困難であったような多量の画像を一括でオートマチックに解析可能、 解析に熟練の技術を要せずに3次元データが得られる。

3. 画像解析手法の開発について 3次元モデル作成


①PhotoScanから作成された点群データ+TINモデル

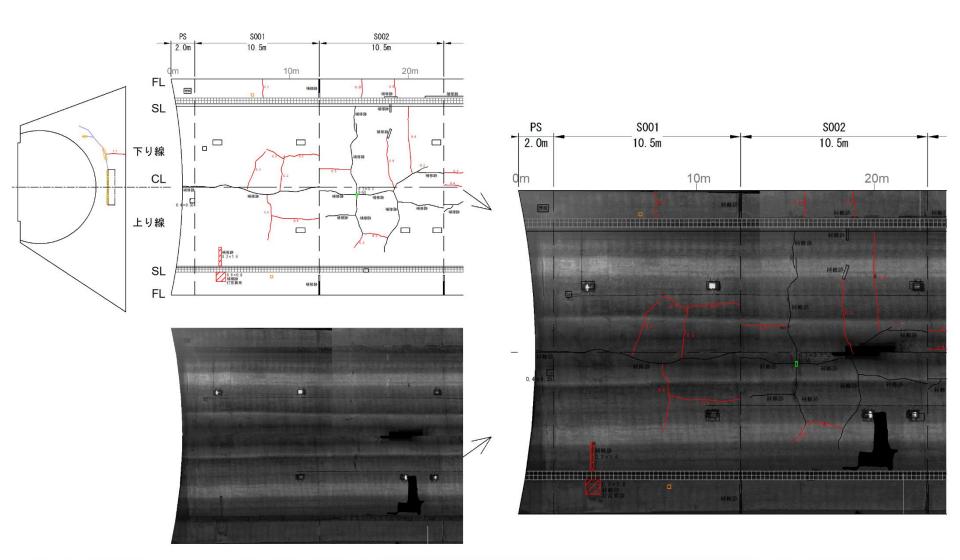

3. 画像解析手法の開発について 3次元から二次元へ展開

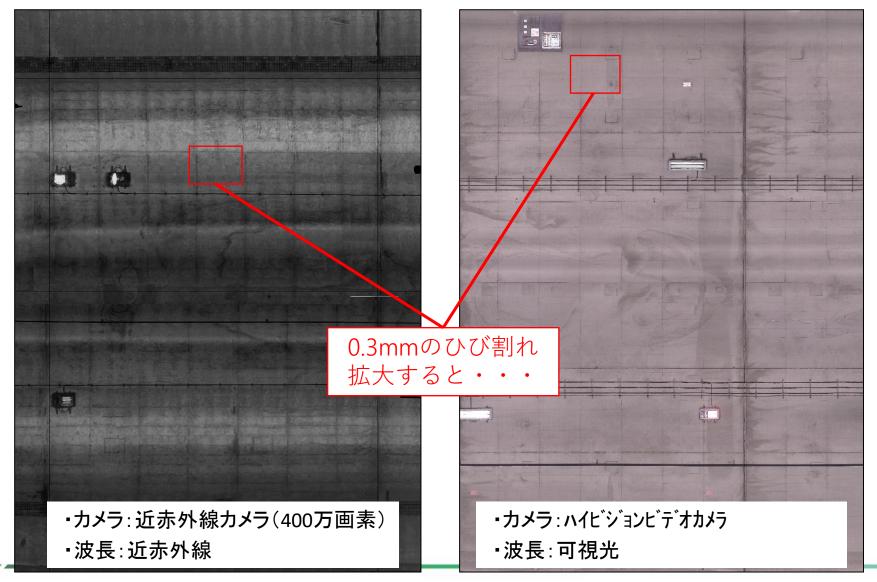
②標準形状に合わせてTINモデル・点群データを展開

(スマッシュ)

3. 画像解析手法の開発について 2次元画像展開図

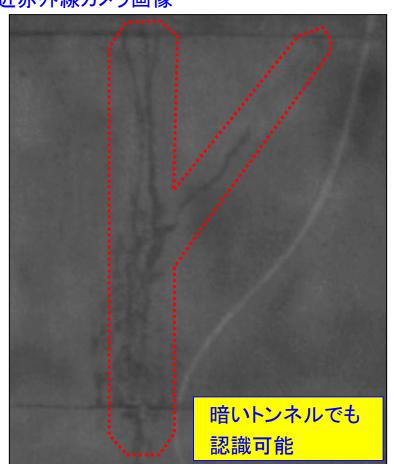
3. 画像解析手法の開発について 3Dモデル拡大写真

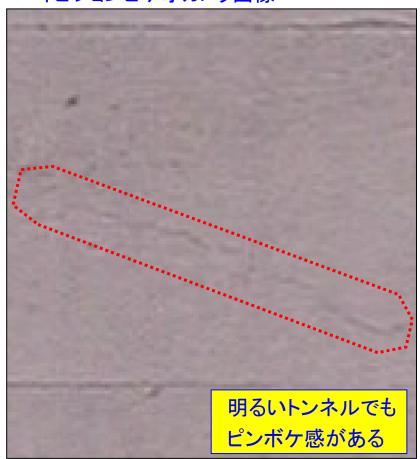

Segmentation [PAUSED]


10

3. 画像解析手法の開発について 覆工展開写真とスケッチ

3. 画像解析手法 覆工展開写真

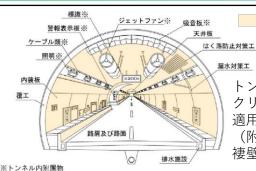



3. 画像展開手法 覆工展開写真

近赤外線カメラ画像

ハイビジョンビデオカメラ画像

近赤外線カメラのほうが、ひび割れをより良く確認できる


4.新技術活用検討 概要

検討概要

従来点検と新技術活用した 点検の比較検討を行う。 比較項目は、「コスト」, 「点検日数」とする。

トンネル例

: 対象範囲

トンネル全線の覆エコン クリートの表面に対して 適用

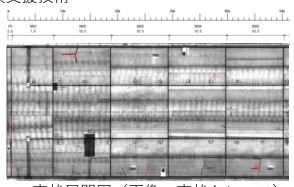
(附属物等の背面、面壁、 褄壁は対象外)


従来点検

近接目視+打音検査結果をスケッチに て記録

近接目視+打音検査を実施し、その結果を現場にてスケッチして変状展開図を作成する。

点検状況(近接目視+打音検査)


新技術活用点検

走行型画像計測による写真撮影 によるスケッチの代替

スケッチ作業が不要となり、 点検時間の短縮が可能。人 為的ミス(写真の撮り忘れ やスケッチの記載漏れ)の 削減が可能。

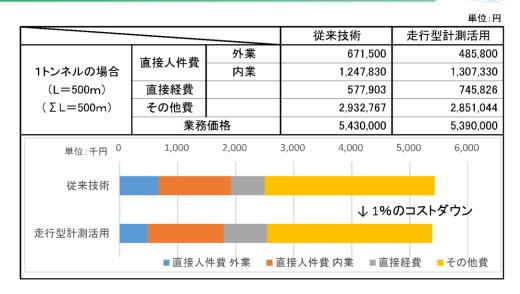
点検支援技術

変状展開図(画像+変状トレース)

4.新技術活用検討 従来技術との点検コスト比較

【コスト試算条件】

- ①トンネル延長500m
- ②1トンネルと10トンネルの場合をそれぞれ比較


【比較結果】

- ①10トンネル案において、スケールメリットがある
- ②現地点検作業を50%効率化
- ③点検時の交通規制時間の短縮 が可能

参考文献

トンネル点検支援技術の高度化に関する研究報告書 R3年9月発行

トンネル点検支援技術の高度化に関する研究プロジェクト

単位:円

		従来技術	走行型計測活用		
	直接人件費	外業	6,715,000	3,545,800	
10トンネルの場合	直接八 仟貝	内業	14,710,150	11,225,159	
(L=500m)	直接経費		5,199,226	3,486,060	
$(\Sigma L=5 000m)$	その他費		32,075,624	22,062,981	
	業務	価格	58,700,000	40,320,000	
単位:千円	10,000 2	0,000 30,000	40,000 50,000	60,000 70,000	
従来技術					
走行型計測活用			↓ <u>30%</u> のコス	ストダウン	
■直接人件費 外業 ■直接人件費 内業 ■直接経費 ■その他費					

4.新技術活用検討 従来技術との点検日数比較

- ・低減率は、平均的に50%程度
- ・延長によって効率は異なり、1km未満の場合は20%程度、1km以上の場合は60%程度

					従来点検		本業務(新技術活用)			効率化	
トンネル 名	点検 内容	トンネ ル 延長(m)	点検面積 (m ²)	ひび割れ密 度 (m/m²)*1	点検日数	作業班 ※2	高所作業 車の台数	点検日数 (日)	作業班 ^{※2}	高所作業 車の台数	低減率
A トンネル	監視 点検	740	1,195	0.08	1	2	2	1	2	2	0
B トンネル	定期 点検	330	6,022	0.14	1	2	2	1	2	2	0
C トンネル	定期 点検	38	841	0.55	1	1	1	1	1	1	0
D トンネル	定期 点検	1,420	29,652	0.14	4	3	12	1	3	3	75%
E トンネル	定期 点検	2,810	59,249	0.14	7	3	21	3	3	9	57%
F トンネル	定期 点検	389	8,376	0.19	2	2	4	1	2	2	50%
	合計	5,727	105,335	1km未満	5		9	4		7	20%
				1km以上	11		33	4		12	64%
				合計	16		42	8		19	50%

	従来点検日数	今回点検日数	日数比率	低減率
1km未満	5	4	80%	20%
1km以上	11	4	36%	64%
合計	16	8	50%	50%

参考文献

トンネル点検支援技術の高度化に関する研究報告書;R3年9月発行、トンネル点検支援技術の高度化に関する研究プロジェクト

情報をつなげる力で、 人・社会・地球の未来をデザインする

